Whisper Akan Finetuned

This model is a fine-tuned version of openai/whisper-small on the WaxalNLP Akan dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5045
  • Wer: 38.8906

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.5849 0.8795 500 0.7880 58.7006
1.1377 1.7581 1000 0.5842 45.0593
0.9672 2.6368 1500 0.5044 38.2501
0.8439 3.5154 2000 0.4759 37.6913
0.7449 4.3940 2500 0.4575 42.1849
0.5790 5.2726 3000 0.4555 40.9956
0.5198 6.1513 3500 0.4545 46.8275
0.5027 7.0299 4000 0.4539 47.9825

Framework versions

  • PEFT 0.18.1
  • Transformers 5.0.0
  • Pytorch 2.9.0+cu126
  • Datasets 4.5.0
  • Tokenizers 0.22.2
Downloads last month
93
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for zirri23/whisper-akan-finetuned

Adapter
(175)
this model

Dataset used to train zirri23/whisper-akan-finetuned

Evaluation results