CineTrans: Learning to Generate Videos with Cinematic Transitions via Masked Diffusion Models
Paper
β’
2508.11484
β’
Published
Xiaoxue Wu1,2*, Bingjie Gao2,3, Yu Qiao2β , Yaohui Wang2β , Xinyuan Chen2β
git clone https://github.com/UknowSth/CineTrans.git
cd CineTrans
conda create -n cinetrans python==3.11.9
conda activate cinetrans
pip install torch==2.5.1 torchvision==0.20.1 --index-url https://download.pytorch.org/whl/cu118
pip install -r requirements.txt
Download the weights of Wan2.1-T2V-1.3B and lora weights. Place them as:
Wan2.1-T2V-1.3B/ # original weights
βββ google/
β βββ umt5-xxl/
βββ config.json
βββ diffusion_pytorch_model.safetensors
βββ models_t5_umt5-xxl-enc-bf16.pth
βββ Wan2.1_VAE.pth
ckpt/
βββ weights.pt # lora weights
For more inference details, please refer to our GitHub repository.
If you find CineTrans useful for your research and applications, please cite using this BibTeX:
@misc{wu2025cinetranslearninggeneratevideos,
title={CineTrans: Learning to Generate Videos with Cinematic Transitions via Masked Diffusion Models},
author={Xiaoxue Wu and Bingjie Gao and Yu Qiao and Yaohui Wang and Xinyuan Chen},
year={2025},
eprint={2508.11484},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2508.11484},
}
Base model
Wan-AI/Wan2.1-T2V-1.3B