Commit
·
7df8416
1
Parent(s):
7d3e531
Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,57 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- Anthropic/hh-rlhf
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
pipeline_tag: text-generation
|
| 8 |
---
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
# GPT-2 Medium SFT and DPO on Anthropic-hh Dataset
|
| 12 |
+
|
| 13 |
+
This repository GPT-2 Medium model instruct tuned first on the Anthropic-hh dataset and then further aligned on the same dataset with DPO.
|
| 14 |
+
|
| 15 |
+
## Model Information
|
| 16 |
+
|
| 17 |
+
- **Model Name:** RaushanTurganbay/GPT2_sft_and_dpo_tuned
|
| 18 |
+
- **Base Model:** GPT-2 Medium
|
| 19 |
+
- **Training Data:** Anthropic-hh dataset
|
| 20 |
+
- **Fine-Tuning Approach:** Direct Preference Optiization (DPO)
|
| 21 |
+
|
| 22 |
+
## How to Use
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
```python
|
| 26 |
+
import torch
|
| 27 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer, StoppingCriteria, StoppingCriteriaList
|
| 28 |
+
|
| 29 |
+
tokenizer_dpo = GPT2Tokenizer.from_pretrained("RaushanTurganbay/GPT2_sft_and_dpo_tuned")
|
| 30 |
+
model_dpo = GPT2LMHeadModel.from_pretrained("RaushanTurganbay/GPT2_sft_and_dpo_tuned")
|
| 31 |
+
|
| 32 |
+
class StoppingCriteriaSub(StoppingCriteria):
|
| 33 |
+
def __init__(self, stops=[], encounters=1):
|
| 34 |
+
super().__init__()
|
| 35 |
+
self.stops = [stop.to("cuda") for stop in stops]
|
| 36 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
|
| 37 |
+
for stop in self.stops:
|
| 38 |
+
if torch.all((stop == input_ids[0][-len(stop):])).item():
|
| 39 |
+
return True
|
| 40 |
+
return False
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def stopping_criteria(tokenizer, stop_words):
|
| 44 |
+
stop_words_ids = [tokenizer(stop_word, return_tensors='pt')['input_ids'].squeeze() for stop_word in stop_words]
|
| 45 |
+
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
|
| 46 |
+
return stopping_criteria
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
# Generate responses
|
| 50 |
+
stopping = stopping_criteria(tokenizer, ["\n\nHuman:"])
|
| 51 |
+
prompt = "\n\nHuman: {your_instruction}\n\nAssistant:"
|
| 52 |
+
inputs_dpo = tokenizer_dpo(prompt, return_tensors="pt")
|
| 53 |
+
outputs_dpo = model_dpo.generate(**inputs_dpo, stopping_criteria=stopping, max_length=150)
|
| 54 |
+
|
| 55 |
+
print("Model Response:", tokenizer_dpo.batch_decode(outputs_dpo))
|
| 56 |
+
```
|
| 57 |
+
|